Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we define the notion of affine curvatures on a discrete planar curve. By the moving frame method, they are in fact the discrete Maurer–Cartan invariants. It shows that two curves with the same curvature sequences are affinely equivalent. Conditions for the curves with some obvious geometric properties are obtained and examples with constant curvatures are considered. On the other hand, by using the affine invariants and optimization methods, it becomes possible to collect the IFSs of some self-affine fractals with desired geometrical or topological properties inside a fixed area. In order to estimate their Hausdorff dimensions, GPUs can be used to accelerate parallel computing tasks. Furthermore, the method could be used to a much broader class.
It is shown how a system of differential forms can reproduce the complete set of differential equations generated by an SO(m) matrix Lax pair. By selecting the elements in the given matrices appropriately, examples of integrable nonlinear equations can be produced. The SO(3) case is discussed in detail, then extended to an m - 1 dimensional manifold immersed in Euclidean space.
We investigate the relation between two types of space curves, the Mannheim curves and constant-pitch curves and primarily explicate a method of deriving Mannheim curves and constant-pitch curves from each other by means of a suitable deformation of a space curve. We define a “radius” function and a “pitch” function for any arbitrary regular space curve and use these to characterize the two classes of curves. A few non-trivial examples of both Mannheim and constant pitch curves are discussed. The geometric nature of Mannheim curves is established by using the notion of osculating helices. The Frenet–Serret motion of a rigid body in theoretical kinematics is studied for the special case of a Mannheim curve and the axodes in this case are deduced. In particular, we show that the fixed axode is developable if and only if the motion trajectory is a Mannheim curve.
A variational approach is given which can be applied to functionals of a general form to determine a corresponding Euler–Lagrange or shape equation. It is the intention to formulate the theory in detail based on a moving frame approach. It is then applied to a functional of a general form which depends on both the mean and Gaussian curvatures as well as the area and volume elements of the manifold. Only the case of a two-dimensional closed manifold is considered. The first variation of the functional is calculated in terms of the variations of the basic variables of the manifold. The results of the first variation allow for the second variation of the functional to be evaluated.
A smooth surface is considered which has a curved boundary. A system of exterior differential forms is introduced which describes the surface and boundary curves completely in the moving frame approach. A total free energy functional is defined based on these forms for which an equilibrium equation and boundary conditions of the surface are derived by calculating the variation of the total free energy. These results can be applied to a surface with several freely exposed edges.
We survey a recent extension of the moving frames method for infinite-dimensional Lie pseudo-groups. Applications include a new, direct approach to the construction of Maurer–Cartan forms and their structure equations for pseudo-groups, and new algorithms, based on constructive commutative algebra, for uncovering the structure of the algebra of differential invariants for pseudo-group actions.