Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Continuous manufacturing of 3D patterned hybrid film via a roll-to-roll process with UV curing

    A strategy for continuous fabrication of a microscale 3D-patterned hybrid composite film composed of alumina and acrylate resin was developed using roll-to-roll production. Conventional thermal curing was replaced with a UV curing procedure to facilitate rapid and economical processing. A seamless engraved soft urethane mold was first produced using a patterned metal roll. Subsequently, alumina and acrylate resin were cured on the engraved mold via UV irradiation to produce patterned hybrid films. The dispersion of alumina particles in acylate resin was enhanced by utilizing amine acrylate. Photopolymerization was measured using Fourier-transform infrared spectroscopy. The morphology of the soft engraved mold and the patterned hybrid film was investigated using scanning electron microscopy.

  • articleNo Access

    Synthesis and characterization of porphyrin–pyrene hybrids

    Palladium-catalyzed Suzuki–Miyaura coupling of 5-functionalized Ni(II) porphyrins with 1,3,6,8-tetrafunctionalizedpyrenes was carried out to obtain two kinds of porphyrin–pyrene hybrids. These compounds were comprehensively characterized by nuclear magnetic resonance (NMR), high-resolution mass spectrometry and ultraviolet-visible (UV-vis) absorption spectrometry, and their electrochemical properties were studied by both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Fluorescence spectra for zinc compounds and free-base compounds were performed. In addition, the structure of 4Zn, a porphyrin tetramer, was determined by X-ray diffraction analysis, in which two planes formed by the porphyrin unit and the pyrene moiety adopt nearly perpendicular geometry with two sets of dihedral angles displaying 85.14 (4)° and 83.90 (4)°, respectively. In the UV-vis absorption spectra, the maximum wavelengths of Soret bands and Q bands for these hybrids were observed at 434 and 648 nm. As the number of porphyrin units increases, the corresponding molar extinction coefficient rises markedly, in which the maximal value is 7.4 × 105 M1 • cm1 belonging to 4Zn. Moreover, the presence of energy transformation from the pyrene moiety to the porphyrin unit has been proved by emission spectra. Finally, the electrochemical properties of these porphyrin–pyrene hybrids were analyzed by using cyclic voltammetry and differential pulse voltammetry, which show that the nickel hybrids possessed the maximal electrochemical highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap and the zinc compounds displayed the minimum electrochemical HOMO–LUMO gap.

  • articleNo Access

    HIERARCHICAL CARBON NANOTUBE-INORGANIC HYBRID STRUCTURES INVOLVING CNT ARRAYS AND CNT FIBERS

    Carbon nanotube-inorganic hybrid materials have stimulated a new boost in CNT research as a new class of multifunctional materials with properties distinct from the well-known CNT composites. Synergistic effects based on interfacial charge and heat transfer processes commend these hybrids for use in photocatalysis, gas sensors and in electrochemical devices. A major challenge is the synthesis of hybrids with hierarchical architectures and controlled interfaces. Common wet-chemical techniques have the major drawback that the CNT array typically collapses upon drying due to stresses imposed by the surface tension of the solvent. In this work, we synthesized hierarchical hybrids with coherent 3D architectures using unique CNT fibers, based on the "Cambridge process" as well as vertical arrays of CNTs ("carpets"). We demonstrate that separating the liquid reactants from the CNT array is key to preserving the hybrid's architecture. In addition, we show that the presence of benzyl alcohol as a linking agent is beneficial to maximizing the interfacial area in TiO2-coated CNT fibers.

  • articleNo Access

    Oxometalate- and Soft-Oxometalate-Based Hybrid Materials: From Synthesis to Catalytic Applications

    Multi-component hybrid materials are intriguing. They have the potential to act as a platform to manifest the properties of their components. In this review, we discuss the catalytic applications of few such hybrids that are based on oxometalates (OMs). Due to the structural flexibility and enormous properties, OMs are unrivaled in the field of catalysis. Thus, here we primarily focus on the synthesis and catalysis of such OM-based hybrids. The present overview shows that it is possible to improve the catalytic property of bare oxometalates and even that of their soft-matter state namely soft-oxometalates (SOMs) through rational choice of organic ligand and oxometalates.