Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its miniaturization. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.
COVID-19 is a serious respiratory disease caused by a devastating coronavirus family (2019-nCoV) that has become a global epidemic. It is an infectious virus transmitted by inhalation or contact with the droplet core produced by infected people when they sneeze, cough, and speak. SARS-COV-2 transmission in the air is possible even in a confined space near the infected person. This study examines air conditioners’ effect on the mixed virus and droplets with aerosol disinfectant and gets throughout the elevator to detect the SARS-COV-2, which helps protect passengers’ lives. This study uses fluent 2019R3 software to simulate the virus transmission to model the transient flows numerically. The analysis found that the ventilation system’s turbulent fields can be an effective method of protecting the space from being saturated by the coronavirus.