Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Insulin resistance as well as insulin deficiency are said to be principal to the development of type 2 diabetes mellitus (T2Dm). Heme has also been suggested to play an important role in the disease etiology since many of the heme deficiency symptoms constitute the common pathological features of T2Dm. Besides, iron overload, higher heme iron intake and transfusion requiring diseases are associated with a higher risk of T2Dm development. In this study the interaction between these two key components i.e. heme and insulin has been studied spectroscopically under different conditions which include the effect of excess peptide as well as increasing pH. The resultant heme-insulin complexes in their reduced state are found to produce very little partially reduced oxygen species (PROS) on getting oxidized by molecular oxygen. The interaction between insulin and previously reported T2Dm relevant heme-amylin complex were also examined using absorption and resonance Raman spectroscopy. The corresponding data suggest that insulin sequesters heme from heme-amylin to form the much less cytotoxic heme-insulin.
Soluble microneedles (MNs) have recently become an efficient and minimally invasive tool in transdermal drug delivery because of their excellent biocompatibility and rapid dissolution. However, direct monitoring of structural and functional changes of MNs in vivo to estimate the efficiency of insulin delivery is difficult. We monitored the dissolution of MNs to obtain structural imaging of MNs’ changes by using optical coherence tomography (OCT). We also observed the effect of MNs on microvascular conditions with laser speckle contrast imaging (LSCI) and measured the blood perfusion of skin to obtain functional imaging of MNs. We determined the performance of two soluble MN arrays made from polyvinyl alcohol (PVA) and polyvinyl alcohol/polyvinylpyrolidone (PVA/PVP) by calculating the cross-sectional areas of the microchannels in mouse skin as a function of time. Moreover, the change in blood glucose before and after using MNs loaded with insulin was evaluated as an auxiliary means to demonstrate the ability of the soluble MNs to deliver insulin. Results showed that the structural imaging of these MNs could be observed in vivo via OCT in real time and the functional imaging of MNs could be showed using LSCI. OCT and LSCI are potential tools in monitoring MNs structural and functional changes.