X-ray absorption fine structure (XAFS) spectroscopy has been widely used for decades in a wide range of scientific fields, including physics, chemistry, biology, materials, environmental sciences, and so on. In this chapter, we introduce the XAFS principles, including its basic theory, data analysis and experiment, from the view point of practical use. To show its strength as a local structure probe, applications of XAFS in various functional materials are introduced, covering nanoparticles and catalysts, magnetic semiconductors, thin film materials, complex compounds, in situ probing of the nucleation and growth processes of nanomaterials, as well as operando study of catalysts under working conditions.
In addition, we also briefly introduce some relatively new XAFS-related techniques, such as time-resolved and space-resolved XAFS techniques.