Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we give two classes of positive semi-definite metrics on 2-manifolds. The one is called a class of Kossowski metrics and the other is called a class of Whitney metrics: The pull-back metrics of wave fronts which admit only cuspidal edges and swallowtails in R3 are Kossowski metrics, and the pull-back metrics of surfaces consisting only of cross cap singularities are Whitney metrics. Since the singular sets of Kossowski metrics are the union of regular curves on the domains of definitions, and Whitney metrics admit only isolated singularities, these two classes of metrics are disjoint. In this paper, we give several characterizations of intrinsic invariants of cuspidal edges and cross caps in these classes of metrics. Moreover, we prove Gauss–Bonnet type formulas for Kossowski metrics and for Whitney metrics on compact 2-manifolds.