Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Lectures of Sidney Coleman on Quantum Field Theory
Lectures of Sidney Coleman on Quantum Field Theory

edited by Bryan Gin-ge Chen, David Derbes, David Griffiths, Brian Hill, Richard Sohn and Yuan-Sen Ting
Facts and Mysteries in Elementary Particle Physics
Facts and Mysteries in Elementary Particle Physics

Revised Edition
by Martinus Veltman

 

  • articleNo Access

    STUDIES OF THE FEW-BODY PROBLEM IN ATOMIC BREAK-UP PROCESSES

    Fully differential studies of single ionization of neutral atoms by charged particle impact have proven to be extremely powerful to advance our understanding of the few-body dynamics in atomic processes. Until a few years ago, such data were only available for electron impact and were mostly limited to electrons ejected into the scattering plane. When fully differential data were finally obtained for ion impact covering the entire three-dimensional space, very surprising features were observed. It then became clear that our understanding of ionization processes in atomic collisions is not nearly as complete as previously assumed. Here, we review the development of experimental and theoretical studies of three-dimensional fully differential single ionization cross-sections since then.