Injections of iron salts into the sensorimotor cortex, hippocampus, and amygdala of experimental animals results in chronic recurrent focal paroxysmal electroencephalographic discharges, behavioral convulsions, and electrical seizures. The induction of epilepsy may be related to generation of free radicals, lipid peroxidation of neuronal membranes, increased intracellular calcium concentrations through reverse action of sodium-calcium exchanger/reduced activity of plasma membrane or endoplasmic reticulum calcium ATPases, increased release of excitatory neurotransmitters, including aspartate and glutamate, and increased influx of ions through glutamate receptors. Some of the above effects of iron can be abrogated by inhibitors of phospholipase A2 (PLA2) indicating that the damaging effects of iron may be due to perturbation of the lipid environment essential to normal functioning of membrane proteins. Iron in hemoglobin, or by itself, is also likely to be the cause of human epilepsy, in instances where there is increased iron load in the brain. These include subarachnoid hemorrhage, intraparenchymal hemorrhages due to head injury and stroke, malaria, human immunodeficiency virus encephalitis, and possibly, neuroleptic drug use. A reduced level of haptoglobin, a hemoglobin-binding protein, has also been observed in select kindred relatives affected with familial idiopathic epilepsy. An accumulation of iron has been observed in the motor cortex with age, and it is possible that this might contribute to the increased incidence of epilepsy among the elderly. Iron accumulates with time in rat hippocampus after kainate-induced epilepsy. The accumulation occurs in oligodendrocytes, and is likely to be a reflection of the high levels of iron in the extracellular space. The accumulation of iron is correlated with increased expression of the divalent metal transporter-1 in astrocytes in the glial scar and increased expression of heme oxygenase-1 in reactive astrocytes and microglia, as well as degenerating neurons at the edge of the scar. The increased divalent metal transporter-1 expression could lead to increased uptake of iron, followed by redistribution to the extracellular space. In this model, iron is the consequence of epilepsy, although it is possible that it can also be a cause of epilepsy. Further work is necessary to elucidate the effects of lipid peroxidation of the cellular membranes on function of membrane proteins and the role of phospholipases, including PLA2, in perturbing the lipid environment. The possible presence of iron in the human brain after epilepsy also needs to be elucidated. The causes of dysregulation of iron in the glial scar after neuronal injury need to be studied. In addition, possible beneficial effects of iron chelators, antioxidants that cross the blood-brain barrier, or neuroprotective gene induction on epilepsy, need to be evaluated.