Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Encoding isotopic watermarks in molecular electronic materials as an anti-counterfeiting strategy: Application to porphyrins for information storage

    An approach for information storage employs tetrapyrrole macrocycles as charge-storage elements attached to a (semi)conductor in hybrid chips. Anti-counterfeiting measures must cohere with the tiny amounts of such electroactive material and strict constraints on composition in chips; accordingly, the incorporation of typical anti-counterfeiting taggants or microcarriers is precluded. The provenance of the tetrapyrroles can be established through the use of isotopic substitution integral to the macrocycle. The isotopic substitution can be achieved by rational site-specific incorporation or by combinatorial procedures. The formation of a mixture of such macrocycles with various isotopic composition (isotopically unmodified, isotopologues, isotopomers) provides the molecular equivalent of an indelible printed watermark. Resonance Raman spectroscopic examination can reveal the watermark, but not the underlying molecular and isotopic composition; imaging mass spectrometry can reveal the presence of isotopologues but cannot discriminate among isotopomers. Hence, deciphering the code that encrypts the watermark in an attempt at forgery is expected to be prohibitive. A brief overview is provided of strategies for incorporating isotopes in meso-substituted tetrapyrrole macrocycles.

  • chapterNo Access

    1: Introduction

      Some people think that carbon and sustainable development are not compatible. This textbook shows that carbon dioxide (CO2) from the air and bio-carbon from biomass are our best allies in the energy transition, towards greater sustainability. We pose the problem of the decarbonation (or decarbonization) of our economy by looking at ways to reduce our dependence on fossil carbon (coal, petroleum, natural gas, bitumen, carbonaceous shales, lignite, peat). The urgent goal is to curb the exponential increase in the concentration of carbon dioxide in the atmosphere and hydrosphere (Figures 1.1 and 1.2) that is directly related to our consumption of fossil carbon for our energy and materials The goal of the Paris agreement (United Nations COP 21, Dec. 12, 2015) of limiting the temperature increase to 1.5 degrees (compared to the pre-industrial era, before 1800) is becoming increasingly unattainable (Intergovermental Panel on Climate Change (IPCC), report of Aug. 6, 2021). On Aug. 9, 2021 Boris Johnson, prime minister of the United Kingdom, declared that coal needs to be consigned to history to limit global warming. CO2 has an important social cost…