Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Isotopes of simple algebras of arbitrary dimension

    It is proved that every finite-dimensional algebra is embeddable in a simple finite-dimensional algebra (a suitable isotope of a matrix algebra). An isotope of the 2nd order matrix algebra over an infinite extension of the ground field may contain a trivial ideal.

    Every one-sided isotope of a simple unital alternative or Jordan algebra is a simple algebra. Besides, any isotope of a central simple non-Lie Maltsev algebra of characteristic other than 2 and 3 is a simple algebra. But an isotope of a simple Jordan algebra of the symmetric bilinear form on the infinite dimensional space may contain a trivial ideal.