Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Encoding isotopic watermarks in molecular electronic materials as an anti-counterfeiting strategy: Application to porphyrins for information storage

    An approach for information storage employs tetrapyrrole macrocycles as charge-storage elements attached to a (semi)conductor in hybrid chips. Anti-counterfeiting measures must cohere with the tiny amounts of such electroactive material and strict constraints on composition in chips; accordingly, the incorporation of typical anti-counterfeiting taggants or microcarriers is precluded. The provenance of the tetrapyrroles can be established through the use of isotopic substitution integral to the macrocycle. The isotopic substitution can be achieved by rational site-specific incorporation or by combinatorial procedures. The formation of a mixture of such macrocycles with various isotopic composition (isotopically unmodified, isotopologues, isotopomers) provides the molecular equivalent of an indelible printed watermark. Resonance Raman spectroscopic examination can reveal the watermark, but not the underlying molecular and isotopic composition; imaging mass spectrometry can reveal the presence of isotopologues but cannot discriminate among isotopomers. Hence, deciphering the code that encrypts the watermark in an attempt at forgery is expected to be prohibitive. A brief overview is provided of strategies for incorporating isotopes in meso-substituted tetrapyrrole macrocycles.