Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, the auxiliary expansion equation method is applied to compute the analytical wave solutions for (3+1)-dimensional Boussinesq and Kadomtsev–Petviashvili (KP) equations. A simple transformation is carried out to reduce the set of nonlinear partial differential equations (NPDEs) into ODEs. These obtained results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance.
In this study, the (3 + 1)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation arising from the (3 + 1)-dimensional Kadomtsev–Petviashvili equation is investigated in detail by using two powerful approaches. First, the generalized resonant multi-soliton solution is generated via the simplified linear superposition principle. Second, after applying the simplest equation method, the generalized single solitary solution is extracted. The results show that the obtained solutions are perfect. The physical explanation of the obtained solutions is depicted in various 3D and 2D figures, which are used to illustrate that the interactions of resonant multi-soliton waves are inelastic. Ultimately, the study reveals that the inelastic interactions can be determined by the sign of the wave related number ki.
In this paper, we examined four different forms of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili (B-KP)-like equations. In this connection, an accurate computational method based on the Riccati equation called sub-equation method and its Bäcklund transformation is employed. Using this method, numerous exact solutions that do not exist in the literature have been obtained in the form of trigonometric, hyperbolic, and rational. These solutions are of considerable importance in applied sciences, coastal, and ocean engineering, where the B–KP-like equations modeled for some significant physical phenomenon. The graph of the bright and dark solitons is presented in order to demonstrate the influence of different physical parameters on the solutions. All of the findings prove the stability, effectiveness, and accuracy of the proposed method.
The Kadomtsev–Petviashvili (KP) equations are nonlinear partial differential equations which are widely used for the modeling of wave propagation in hydrodynamic and plasma systems. This study aims to make a valuable contribution to the literature by providing new solitary waves to the (2+1)- and (3+1)-dimensional potential Kadomtsev–Petviashvili (pKP)-B-type Kadomtsev–Petviashvili (BKP) equations. For this, the auxiliary equation method associated with Bernoulli equation is used and new solutions for the considered equations are obtained. The stability of obtained solutions is demonstrated using nonlinear analysis. It is shown that this method for the considered pKP–BKP equations is an important step forward in an overall mathematical framework for similar equations.
We show that we can apply the Hirota direct method to some non-integrable equations. For this purpose, we consider the extended Kadomtsev–Petviashvili–Boussinesq (eKPBo) equation with M variable which is