Please login to be able to save your searches and receive alerts for new content matching your search criteria.
How to identify key nodes is a challenging and significant research issue in complex networks. Some existing evaluation indicators of node importance have the disadvantages of limited application scope and one-sided evaluation results. This paper takes advantage of multiple centrality measures comprehensively, by regarding the identification of key nodes as a multi-attribute decision making (MADM) problem. Firstly, a new local centrality (NLC) measure is put forward through considering multi-layer neighbor nodes and clustering coefficients. Secondly, combining the grey relational analysis (GRA) method and the susceptible-infectious-recovered (SIR) model, a modified dynamic weighted technique for order preference by similarity to ideal solution (TOPSIS) method is proposed. Finally, the effectiveness of the NLC is illustrated by applications to nine actual networks. Furthermore, the experimental results on four actual networks demonstrate that the proposed method can identify key nodes more accurately than the existing weighted TOPSIS method.