Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    COMPARISON OF AN ELECTROMAGNETIC AND OPTICAL SYSTEM DURING DYNAMIC MOTION

    Few studies have concurrently investigated the accuracy and repeatability of an optical and electromagnetic (EM) system during dynamic motion. The purposes of this study were to: (1) assess the accuracy of both an EM and optical system when compared to a gold standard and (2) to compare the intra- and inter-day repeatability during 3D kinematic motion of both systems. The gold standard used for accuracy assessment was a robot programmed to manipulate a carbon fiber beam through pre-defined motions within the capture volume of both systems at 30, 45 and 60°/s. A total of 12 healthy young adults were tested for intra- and inter-day repeatability of hip, knee and ankle joint angles during a sit-to-stand movement. Marker trajectories were captured using an 8-camera Motion Analysis system and a Polhemus Liberty system. Optical markers for both portions of the study were precisely marked to allow for digitization by the EM system, with collections taken at 120 Hz. Accuracy and repeatability were assessed using the RMS error and coefficient of multiple correlations (CMC), respectively. The optical system demonstrated a 1–2.5° lower RMS error in tracking the robot movements in the transverse and sagittal planes when compared to the EM system. However, it was possible that metal interference affected the accuracy of the EM system. High intra-day and inter-day repeatability was demonstrated by both systems during the sit-to-stand task. The optical system did demonstrate slightly higher CMC values for between day trials, though skin motion artifact might have affected the EM system to a greater extent. Overall, both systems demonstrated an adequate ability to track dynamic motion.

  • articleNo Access

    INFLUENCE OF VARIOUS DAILY TASKS ON SEGMENTED TRUNK KINEMATICS

    Back pain can affect up to 65% of the American population and cost the health care system approximately fifty billion dollars each year. Due to the difficulty with recording spine/trunk movement, several methods and models exist. The myriad of methods and the need for understanding of spine/trunk motion has led to a lack in a ‘gold-standard’ of treatment for individuals with back pain. Therefore, the purpose of this study was to examine the effect of different activities of daily living on the kinematics of individual trunk segments in young adults to determine how common ambulatory tasks will alter trunk motion compared to level walking.

    Young healthy adults completed, in a random order, four activities of daily living: level walking, obstacle crossing, stair ascent and descent using a previously validated model. Subjects were outfitted with a full body marker set which included a segmented trunk. Multi-segmented trunk angles between the three inferior segments, sacrum to lower lumbar [SLL], lower lumbar to upper lumbar [LLUL] and upper lumbar to lower thorax [ULLT], were calculated and compared between tasks. Peak flexion angles, instance of peak angle and range of motion were analyzed.

    The overall hypothesis that different spine levels will have altered kinematics during various activities of daily living was supported. Stair descent had smaller peak flexion angles than obstacle crossing and stair ascent. The instance of peak angle were different depending on trunk angle and daily task. The most inferior trunk angle — Sacrum-to-Lower Lumbar — had the largest range of motion during all four tasks in all three (sagittal, frontal and transverse) planes of motion.

    This study was able to show how various activities of daily living produce different motions in the three inferior segments of a multi-segmented trunk method. The results of this study are the first steps in understanding how the trunk responds on a daily basis and how those responses could lead to back pain.