Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Reduced-Order Model Description of Origami Stent Built with Waterbomb Pattern

    Origami-inspired structures have found many innovative applications in engineering fields. The expressive volume changes intrinsically related to their geometry is very useful for different purposes. Nevertheless, the mathematical description of origami structures is complex, which makes the design a challenging topic. This work deals with the use of reduce-order models for the origami description. A cylindrical origami structure with waterbomb pattern, called origami stent, is of concern. A reduced-order model (ROM) is developed based on kinematics and symmetry hypotheses. Afterward, a finite element analysis (FEA) is developed based on a nonlinear bar-and-hinge model. Numerical simulations are carried out evaluating the ROM validity range. Rigid and non-rigid situations are investigated showing that ROM is able to be employed for origami description.