Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    KINEMATICS OF FLOWS ON CURVED, DEFORMABLE MEDIA

    Kinematics of geodesic flows on specific, two-dimensional, curved surfaces (the sphere, hyperbolic space and the torus) are investigated by explicitly solving the evolution (Raychaudhuri) equations for the expansion, shear and rotation, for a variety of initial conditions. For flows on the sphere and on hyperbolic space, we show the existence of singular (within a finite value of the time parameter) as well as non-singular solutions. We illustrate our results through a phase diagram which demonstrates under which initial conditions (or combinations thereof) we end up with a singularity in the congruence and when, if at all, we can obtain non-singular solutions for the kinematic variables. Our analysis portrays the differences which arise due to positive or negative curvature and also explores the role of rotation in controlling singular behavior. Subsequently, we move on to geodesic flows on two-dimensional spaces with varying curvature. As an example, we discuss flows on a torus. Characteristic oscillatory features, dependent on the ratio of the two radii of the torus, emerge in the solutions for the expansion, shear and rotation. Singular (within a finite time) and non-singular behavior of the solutions are also discussed. Finally, we conclude with a generalization to three-dimensional spaces of constant curvature, a summary of some of the generic features obtained and a comparison of our results with those for flows in flat space.

  • articleNo Access

    A new approach to design the ruled surface

    This paper considers a kind of design of a ruled surface. The design interconnects some concepts from the fields of computer-aided geometric design (CAGD) and kinematics. Dual unit spherical Bézier-like curves on the dual unit sphere (DUS) are obtained by a novel method with respect to the control points. A dual unit spherical Bézier-like curve corresponds to a ruled surface by using Study’s transference principle and closed ruled surfaces are determined via control points and also, integral invariants of these surfaces are investigated. Finally, the results are illustrated by several examples and the motion interpolation was shown as an embodiment of this method.