Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    RESIDUES ON A KLEIN SURFACE

    The reconstruction of a Riemann surface starting from the meromorphic function field K, comes from Dedekind and Weber who developed an algebraic function theory in one variable over an algebraically closed field k. Alling and Greenleaf present a counterpart to this approach starting from a real algebraic curve. From this point of view, the residues theorem is a classical result which depends strongly on the algebraically closed character of the base field. In this paper, via the complex double, we translate this fact to the case where we start from a function field in one variable over R.