Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A WORD POSITION-RELATED LDA MODEL

    LDA (Latent Dirichlet Allocation) proposed by Blei is a generative probabilistic model of a corpus, where documents are represented as random mixtures over latent topics, and each topic is characterized by a distribution over words, but not the attributes of word positions of every document in the corpus. In this paper, a Word Position-Related LDA Model is proposed taking into account the attributes of word positions of every document in the corpus, where each word is characterized by a distribution over word positions. At the same time, the precision of the topic-word's interpretability is improved by integrating the distribution of the word-position and the appropriate word degree, taking into account the different word degree in the different word positions. Finally, a new method, a size-aware word intrusion method is proposed to improve the ability of the topic-word's interpretability. Experimental results on the NIPS corpus show that the Word Position-Related LDA Model can improve the precision of the topic-word's interpretability. And the average improvement of the precision in the topic-word's interpretability is about 9.67%. Also, the size-aware word intrusion method can interpret the topic-word's semantic information more comprehensively and more effectively through comparing the different experimental data.

  • articleNo Access

    Multi-Channel Mapping Image Segmentation Method Based on LDA

    In order to improve the segmentation accuracy of plant lesion images, multi-channels segmentation algorithm of plant disease image was proposed based on linear discriminant analysis (LDA) method’s mapping and K-means’ clustering. Firstly, six color channels from RGB model and HSV model were obtained, and six channels of all pixels were laid out to six columns. Then one of these channels was regarded as label and the others were regarded as sample features. These data were grouped for linear discrimination analysis, and the mapping values of the other five channels were applied to the eigen vector space according to the first three big eigen values. Secondly, the mapping value was used as the input data for K-means and the points with minimum and maximum pixel values were used as the initial cluster center, which overcame the randomness for selecting the initial cluster center in K-means. And the segmented pixels were changed into background and foreground, so that the proposed segmentation method became the clustering of two classes for background and foreground. Finally, the experimental result showed that the segmentation effect of the proposed LDA mapping-based method is better than those of K-means, ExR and CIVE methods.