Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    A COMPARATIVE RESEARCH ON G-HMM AND TSS TECHNOLOGIES FOR EYE MOVEMENT TRACKING ANALYSIS

    Eye movement analysis provides a new way for disease screening, quantification and assessment. In order to track and analyze eye movement scanpaths under different conditions, this paper proposed the Gaussian mixture-Hidden Markov Model (G-HMM) modeling the eye movement scanpath during saccade, combing with the Time-Shifting Segmentation (TSS) method for model optimization, and also the Linear Discriminant Analysis (LDA) method was utilized to perform the recognition and evaluation tasks based on the multi-dimensional features. In the experiments, 800 real scene images of eye-movement sequences datasets were used, and the experimental results show that the G-HMM method has high specificity for free searching tasks and high sensitivity for prompt object search tasks, while TSS can strengthen the difference of eye movement characteristics, which is conducive to eye movement pattern recognition, especially for search tasks.

  • articleOpen Access

    Pre-Training Clustering Models to Summarize Vietnamese Texts

    Our investigation aims at pre-training clustering models to summarize Vietnamese texts. For this purpose, we create a large-scale dataset by collecting Vietnamese articles from newspaper websites and extracting the plain text to build the dataset, including 1,101,101 documents. We propose a new single-document extractive text summarization model based on clustering models. Our proposal clusters the documents with the hard clustering k-means algorithm and the soft clustering LDA (Latent Dirichlet Allocation) algorithm. Then, based on the pre-training clustering models, a summary model is used to select the salient sentence in the input text to construct the summary. The empirical results showed that our summary model achieved 51.22% ROUGE-1, 17.62% ROUGE-2 and 29.16% ROUGE-L on the testing set. Besides the traditional word representation such as BoW (Bag-of-Words), we also use the word meaning-based tools like FastText and BERT (Bidirectional Encoder Representations from Transformers) in our model. The additional benefit of our proposed extractive summary model is that the output summary is a long-text, readable document. Furthermore, the model’s architecture is straightforward, easy to understand and runs on cost-efficient resources like arm CPU and GPU too.