Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We introduce a method based on Gaussian mixture model (GMM) clustering and level-set to automatically detect intraretina fluid on diabetic retinopathy (DR) from spectral domain optical coherence tomography (SD-OCT) images in this paper. First, each B-scan is segmented using GMM clustering. The original clustering results are refined using location and thickness information. Then, the spatial information among every consecutive five B-scans is used to search potential fluid. Finally, the improved level-set method is used to obtain the accurate boundaries. The high sensitivity and accuracy demonstrated here show its potential for detection of fluid.