Please login to be able to save your searches and receive alerts for new content matching your search criteria.
By engineering the boundary conditions of electromagnetic fields between material interfaces, one can dramatically change the Casimir-Lifshitz force between surfaces as a result of the modified zero-point energy density of the system. Repulsive interactions between macroscopic bodies occur when their dielectric responses obey a particular inequality, as pointed out by Dzyaloshinskii, Lifshitz, and Pitaevskii. We discuss experimental verification of this behavior as well as a description of how this can be used to develop a scheme for quantum levitation. Based on these concepts, we discuss the possible development of a new class of devices based on ultra-low static friction and the ability to sort objects based on their dielectric functions.
We consider the one-loop effective potential at zero temperature in Lifshitz-type field theories with anisotropic space–time scaling, with critical exponent z = 3, including scalar, fermion and gauge fields. The fermion determinant generates a symmetry breaking term at one loop in the effective potential and a local minimum appears, for nonzero scalar field, for every value of the Yukawa coupling. Depending on the relative strength of the coupling constants for the scalar and the gauge field, we find a second symmetry breaking local minimum in the effective potential for a bigger value of the scalar field.