Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    COMPLEXITY-BASED ANALYSIS OF THE VARIATIONS OF THE BRAIN’S REACTIONS IN DIFFERENT TYPES OF LOCOMOTIONS

    Fractals01 Jan 2023

    In this research, we apply complexity-based techniques to study the activations of the brain while the subjects perform different types of locomotion, including walking, jogging, and running. Therefore, we can study the effect of locomotion speed (or toughness level) on brain’s reactions. For this purpose, we analyzed the fractal dimension and approximate entropy of electroencephalogram (EEG) signals recorded from subjects while they walked, jogged, and ran for 20 s in the case of each activity. The analysis of 21 recorded samples showed that the complexity of EEG signals increases by increasing the locomotion speed. This result indicates a higher level of processing in the brain while the subjects perform a harder task. This analysis can be extended to the case of other physiological signals to study the effect of the level of exercise on different organs’ activations.

  • articleOpen Access

    Metabolic Allometric Scaling of Multicellular Organisms as a Product of Evolutionary Development and Optimization of Food Chains

    Production of energy is a foundation of life. The metabolic rate of organisms (amount of energy produced per unit time) generally increases slower than organisms’ mass, which has important implications for life organization. This phenomenon, when considered across different taxa, is called interspecific allometric scaling. Its origin has puzzled scientists for many decades, and still is considered unknown. In this paper, we posit that natural selection, as determined by evolutionary pressures, leads to distribution of resources, and accordingly energy, within a food chain, which is optimal from the perspective of stability of the food chain, when each species has sufficient amount of resources for continuous reproduction, but not too much to jeopardize existence of other species. Metabolic allometric scaling (MAS) is then a quantitative representation of this optimal distribution. Taking locomotion and the primary mechanism for distribution of energy, we developed a biomechanical model to find energy expenditures, considering limb length, skeleton mass and speed. Using the interspecific allometric exponents for these three measures and substituting them into the locomotion-derived model for energy expenditure, we calculated allometric exponents for mammals, reptiles, fish, and birds, and compared these values with allometric exponents derived from experimental observations. The calculated allometric exponents were nearly identical to experimentally observed exponents for mammals, and very close for fish, reptiles and the basal metabolic rate (BMR) of birds. The main result of the study is that the MAS is a function of a mechanism of optimal energy distribution between the species of a food chain. This optimized sharing of common resources provides stability of a food chain for a given habitat and is guided by evolutionary pressures and natural selection.