Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MHD BOUNDARY-LAYER FLOW AND HEAT TRANSFER OVER PERMEABLE PLATE WITH CONVECTIVE SURFACE BOUNDARY CONDITION

    A numerical analysis has been carried out to investigate the problem of magnetohydrodynamic (MHD) boundary-layer flow and heat transfer of a viscous incompressible fluid over a fixed plate. Convective surface boundary condition is taken into account for thermal boundary condition. A problem formulation is developed in the presence of thermal radiation, magnetic field and heat source/sink parameters. A similarity transformation is used to reduce the governing boundary-layer equations to couple higher-order nonlinear ordinary differential equations. These equations are numerically solved using Keller–Box method. The effect of the governing parameters such as radiation, Prandtl number, Hartman number, heat source/sink parameter on velocity and temperature profile is discussed and shown by plotting graphs. It is found that the temperature is an increasing function of convective parameter A, radiation and heat source parameters. Besides, the numerical results for the local skin friction coefficient and local Nusselt number are computed and presented in tabular form. Finally a comparison with a previously published results on a special case of the problem has done and shows excellent agreement.