Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    CLASSIFICATION OF INFORMATIVE FRAMES IN COLONOSCOPY VIDEO BASED ON IMAGE ENHANCEMENT AND PHOG FEATURE EXTRACTION

    Colonoscopy allows doctors to check the abnormalities in the intestinal tract without any surgical operations. The major problem in the Computer-Aided Diagnosis (CAD) of colonoscopy images is the low illumination condition of the images. This study aims to provide an image enhancement method and feature extraction and classification techniques for detecting polyps in colonoscopy images. We propose a novel image enhancement method with a Pyramid Histogram of Oriented Gradients (PHOG) feature extractor to detect polyps in the colonoscopy images. The approach is evaluated across different classifiers, such as Multi-Layer Perceptron (MLP), Adaboost, Support Vector Machine (SVM), and Random Forest. The proposed method has been trained using the publicly available databases CVC ClinicDB and tested in ETIS Larib and CVC ColonDB. The proposed approach outperformed the existing state-of-the-art methods on both databases. The reliability of the classifiers’ performance was examined by comparing their F1 score, precision, F2 score, recall, and accuracy. PHOG with Random Forest classifier outperformed the existing methods in terms of recall of 97.95%, precision 98.46%, F1 score 98.20%, F2 score of 98.00%, and accuracy of 98.21% in the CVC-ColonDB. In the ETIS-LARIB dataset it attained a recall value of 96.83%, precision 98.65%, F1 score 97.73%, F2 score 98.59%, and accuracy of 97.75%. We observed that the proposed image enhancement method with PHOG feature extraction and the Random Forest classifier will help doctors to evaluate and analyze anomalies from colonoscopy data and make decisions quickly.

  • articleNo Access

    DETECTION AND CLASSIFICATION OF COVID-19 USING GRAY-LEVEL FEATURES AND ENSEMBLE CLASSIFIER

    The coronavirus or COVID-19 infectious virus is the deadliest and potentially dangerous disease for humans. Radiologists frequently employ medical imaging tools to visualize complex internal structures as well as the functioning of the body. With precise diagnosis, it is possible to identify the infectious COVID-19 virus earlier, especially in an individual having no visible symptoms. For the diagnosis and early detection of the infectious COVID-19 virus, chest X-rays (CXRs) have been utilized which are available at https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database. Applying the gray-level co-occurrence matrix (GLCM) and gray-level run length matrix (GLRLM) feature extraction techniques, the features of the four classes (normal, lung opacity, viral pneumonia, and COVID-19) have been extracted and then classified by utilizing a machine learning (ML) classifier. Six distinct ML classifiers SMO (Sequential Minimal Optimization), Random Tree, MLP (Multi-Layer Perceptron), Linear SVM, Ensemble Classifier (Boosted Tree), and Bayes Net (Bayesian Network) with respective accuracy of 98.85%, 93.19%, 93.35%, 91.5%, 96.4%, and 96.454% are utilized to classify. The classifiers successfully distinguish between normal individuals, viral pneumonia-affected persons, lung opacity individuals, and COVID-19 virus-infected individuals who were considered for the study. These advanced technologies for coronavirus identification may be helpful in areas where access to skilled medical professionals and modern facilities is limited. Hence, as per the analysis, the study may be helpful in disease detection and classification. To classify the virus, radiologists’ second opinion can be quick and accurate in this urgent scenario.