Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    RELAXATION OF SPHERICAL SYSTEMS WITH LONG-RANGE INTERACTIONS: A NUMERICAL INVESTIGATION

    The process of relaxation of a system of particles interacting with long-range forces is relevant to many areas of physics. For obvious reasons, in Stellar Dynamics much attention has been paid to the case of r-2 force law. However, recently the interest in alternative gravities has emerged, and significant differences with respect to Newtonian gravity have been found in relaxation phenomena. Here we begin to explore this matter further, by using a numerical model of spherical shells interacting with an r force law obeying the superposition principle. We find that the virialization and phase-mixing times depend on the exponent α, with small values of α corresponding to longer relaxation times, similarly to what happens when comparing for N-body simulations in classical gravity and in Modified Newtonian Dynamics.