Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Fast Approximate Evaluation of Parallel Overhead from a Minimal Set of Measured Execution Times

    Porting scientific key algorithms to HPC architectures requires a thorough understanding of the subtle balance between gain in performance and introduced overhead. Here we continue the development of our recently proposed technique that uses plain execution times to predict the extent of parallel overhead. The focus here is on an analytic solution that takes into account as many data points as there are unknowns, i.e. model parameters. A test set of 9 applications frequently used in scientific computing can be well described by the suggested model even including atypical cases that were originally not considered part of the development. However, the choice about which particular set of explicit data points will lead to an optimal prediction cannot be made a-priori.