Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Porting scientific key algorithms to HPC architectures requires a thorough understanding of the subtle balance between gain in performance and introduced overhead. Here we continue the development of our recently proposed technique that uses plain execution times to predict the extent of parallel overhead. The focus here is on an analytic solution that takes into account as many data points as there are unknowns, i.e. model parameters. A test set of 9 applications frequently used in scientific computing can be well described by the suggested model even including atypical cases that were originally not considered part of the development. However, the choice about which particular set of explicit data points will lead to an optimal prediction cannot be made a-priori.