Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we study the unrelated parallel machine problem for minimizing the makespan, which is NP-hard. We used Simulated Annealing (SA) and Tabu Search (TS) with Neighborhood Search (NS) based on the structure of the problem. We also used a modified SA algorithm, which gives better results than the traditional SA and developed an effective heuristic for the problem: Squeaky Wheel Optimization (SWO) hybrid with TS. Experimental results average 2.52% from the lower bound and are within acceptable timescales improving current best results for the problem.
Task scheduling is one of the most difficult problems which is associated with cloud computing. Due to its nature, as it belongs to nondeterministic polynomial time (NP)-hard class of problem. Various heuristic as well as meta-heuristic approaches have been used to find the optimal solution. Task scheduling basically deals with the allocation of the task to the most efficient machine for optimal utilization of the computing resources and results in better makespan. As per literature, various meta-heuristic algorithms like genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) and their other hybrid techniques have been applied. Through this paper, we are presenting a novel meta-heuristic technique — genetic algorithm enabled particle swarm optimization (PSOGA), a hybrid version of PSO and GA algorithm. PSOGA uses the diversification property of PSO and intensification property of the GA. The proposed algorithm shows its supremacy over other techniques which are taken into consideration by presenting less makespan time in majority of the cases which leads up to 22.2% improvement in performance of the system and also establishes that proposed PSOGA algorithm converges faster than the others.
This paper proposes a new tri-objective scheduling algorithm called Heterogeneous Reliability-Driven Energy-Efficient Duplication-based (HRDEED) algorithm for heterogeneous multiprocessors. The goal of the algorithm is to minimize the makespan (schedule length) and energy consumption, while maximizing the reliability of the generated schedule. Duplication has been employed in order to minimize the makespan. There is a strong interest among researchers to obtain high-performance schedules that consume less energy. To address this issue, the proposed algorithm incorporates energy consumption as an objective. Moreover, in order to deal with processor and link failures, a system reliability model is proposed. The three objectives, i.e., minimizing the makespan and energy, while maximizing the reliability, have been met by employing a method called Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). TOPSIS is a popular Multi-Criteria Decision-Making (MCDM) technique that has been employed to rank the generated Pareto optimal schedules. Simulation results demonstrate the capability of the proposed algorithm in generating short, energy-efficient and reliable schedules. Based on simulation results, we observe that HRDEED algorithm demonstrates an improvement in both the energy consumption and reliability, with a reduced makespan. Specifically, it has been shown that the energy consumption can be reduced by 5–47%, and reliability can be improved by 1–5% with a 1–3% increase in makespan.
This paper aims to develop a hybrid grey wolf optimization algorithm (HGWO) for solving the job shop scheduling problem (JSP) with the objective of minimizing the makespan. Firstly, to make the GWO suitable for the discrete nature of JSP, an encoding mechanism is proposed to implement the continuous encoding of the discrete scheduling problem, and a ranked-order value (ROV) rule is used to conduct the conversion between individual position and operation permutation. Secondly, a heuristic algorithm and the random rule are combined to implement the population initialization in order to ensure the quality and diversity of initial solutions. Thirdly, a variable neighborhood search algorithm is embedded to improve the local search ability of our algorithm. In addition, to further improve the solution quality, genetic operators (crossover and mutation) are introduced to balance the exploitation and exploration ability. Finally, experimental results demonstrate the effectiveness of the proposed algorithm based on 23 benchmark instances.
In this paper, a bi-population competition adaptive interior search algorithm (BCAISA) based on a reinforcement learning strategy is proposed for the classical flexible job shop scheduling problem (FJSP) to optimize the makespan. First, the scheduling solution is represented using a machine-job-based two-segment integer encoding method, and various heuristic rules are then applied to generate the initial population. Secondly, a bi-population mechanism is introduced to partition the population into two distinct sub-populations. These sub-populations are specifically tailored for machine assignment and operation permutation, employing different search strategies respectively, aiming to facilitate an efficient implementation of parallel search. A competition mechanism is introduced to facilitate the information exchange between the two sub-populations. Thirdly, the ISA is adapted for the discrete scheduling problem by discretizing a series of search operators, which include composition optimization, mirror search, and random walk. A Q-learning-based approach is proposed to dynamically adjust a key parameter, aiming to strike a balance between the capacity for global exploration and local exploitation. Finally, extensive experiments are conducted based on 10 well-known benchmark instances of the FJSP. The design of the experiment (DOE) method is employed to determine the algorithm’s parameters. Based on the computational results, the effectiveness of four improvement strategies is first validated. The BCAISA is then compared with fifteen published algorithms. The comparative data demonstrate that our algorithm outperforms other algorithms in 50% of benchmark instances. Additionally, according to the relative percentage deviation (RPD) from the state-of-the-art results, the BCAISA also exhibits superior performance. This highlights the effectiveness of our algorithm for solving the classical FJSP. To enhance the practical application, the scope of the ISA will be broadened in future work to more complex problems in real-world scenarios.
Resource sharing is an important issue for almost all applications. In this paper, we study communication link sharing strategies for application level scheduler on grids as well as heterogeneous and distributed characteristics. We assume that the link is shared via time-sharing or proportional-sharing. We build solution to solve this problem by linear programming, in rational numbers, which can be solved in polynomial time. Our preliminary results show that time-sharing scheme may achieve better performance than that of proportional-sharing.
In this paper, we study the problem of scheduling a set of independent tasks onto parallel systems, with the objective to find a mapping of all tasks such that the finish time is minimum. We develop an improved local search algorithm which shortens the makespan greatly. Extensively experiments verify the power of our algorithm.