Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ESSENTIAL FACTORS INFLUENCING TUNNELING GIANT MAGNETORESISTANCE OF GRANULAR FILMS

    A series of ferromagnetic-insulator granular films were prepared at room temperature with a spc350 multi-target magnetron controlled sputtering system and all of the tunneling giant magnetoresistences were measured with the conventional four probes method. Experimental results revealed that TMR depends strongly on the magnetic granule, matrix and the size distribution of magnetic granules. Accordingly, a modified phenomenological theory is presented to investigate comprehensively the effect of the magnetic granule, matrix and the size distribution of magnetic granules on the TMR. In this theory, the size distribution of granules was described by the log-normal function and all granules can be divided into three categories which have different contributions on TMR by two critical sizes: D1(T) as the critical size distinguishing superparamagnetic granules from single domain ferromagnetic granules and D2(T) as the critical size distinguishing the single domain from the multi-domain. The calculated results, including TMR versus applied magnetic field, measured temperature, granule size or volume fraction, are in agreement with the experiments when the single domain ferromagnetic granules play a key role in TMR for granular films, which indicates that our modified model is reasonable.