Some subadditivity results involving symmetric (unitarily invariant) norms are obtained. For instance, if
is a polynomial of degree m with non-negative coefficients, then, for all positive operators A, B and all symmetric norms,
To give parallel superadditivity results, we investigate anti-norms, a class of functionals containing the Schatten q-norms for q ∈ (0, 1] and q < 0. The results are extensions of the Minkowski determinantal inequality. A few estimates for block-matrices are derived. For instance, let f : [0, ∞) → [0, ∞) be concave and p ∈(1, ∞). If fp(t) is superadditive, then
for all positive m × m matrix A = [aij]. Furthermore, for the normalized trace τ, we consider functions φ(t) and f(t) for which the functional A ↦ φ ◦ τ ◦ f(A) is convex or concave, and obtain a simple analytic criterion.