Phase synchronization between linearly and nonlinearly coupled systems with internal resonance is investigated in this paper. By introducing the conception of phase for a chaotic motion, we tune the linear coupling parameter to obtain the two Rössler oscillators in a synchronized regime and analyze the effect of a nonlinear coupling on the phase synchronized state. It demonstrates that the detuning parameter σ between the two natural frequencies ω1 and ω2 affects phase dynamics, and with the increase of the nonlinear coupling strength, for the primary resonance, the effect of phase synchronization between two sub-systems was decayed, while increasing with frequency ratio 1:2. Further investigation reveals that the transition of phase states between the two oscillators are related to the critical changes of the nonlinear coupling strength.