Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper concentrates on the study of the superplastic response of coarse-grained Al-Mg alloys under uniaxial tension at different temperatures (ranging from 400°C to 525°C) and strain rates (10-2 S-1, 10-3 S-1 & 10-4 S-1). The microstructures have been analyzed using optical (OM) and transmission electron microscopy (TEM). It has been observed that continuous re-crystallization occurs during hot deformation of the alloy at the temperature of 425°C and strain rate of 10-2S-1. At the temperature of 425°C and strain rate of 3.78×10-3S-1, this Al-Mg alloy has the maximum elongation to failure of 181%, which is sufficient for manufacturing of extremely complex shapes using superplastic forming technology. The constant strain rate sensitivity index m and TEM observations show that in this case deformation mechanism involved is dislocation glide. Recrystallization during the hot tension greatly enhanced the plasticity of the coarse-grained material at a strain rate of about 10-2S-1 and the maximum elongation changes as a function of the strain rate.