We study a 2D scalar harmonic wave transmission problem between a classical dielectric and a medium with a real-valued negative permittivity/permeability which models an ideal metamaterial. When the interface between the two media has a corner, according to the value of the contrast (ratio) of the physical constants, this non-coercive problem can be ill-posed (not Fredholm) in H1. This is due to the degeneration of the two dual singularities which then behave like r±iη = e±iη ln r with η ∈ ℝ*. This apparition of propagative singularities is very similar to the apparition of propagative modes in a waveguide for the classical Helmholtz equation with Dirichlet boundary condition, the contrast playing the role of the wavenumber. In this work, we derive for our problem a functional framework by adding to H1 one of these propagative singularities. Well-posedness is then obtained by imposing a radiation condition, justified by means of a limiting absorption principle, at the corner between the two media.