Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A priori, de novo mathematical exploration of gene expression mechanism via regression viewpoint with briefly cataloged modeling antiquity

    Various algorithms have been devised to mathematically model the dynamic mechanism of the gene expression data. Gillespie’s stochastic simulation (GSSA) has been exceptionally primal for chemical reaction synthesis with future ameliorations. Several other mathematical techniques such as differential equations, thermodynamic models and Boolean models have been implemented to optimally and effectively represent the gene functioning. We present a novel mathematical framework of gene expression, undertaking the mathematical modeling of the transcription and translation phases, which is a detour from conventional modeling approaches. These subprocesses are inherent to every gene expression, which is implicitly an experimental outcome. As we foresee, there can be modeled a generality about some basal translation or transcription values that correspond to a particular assay.