Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The interaction between the H2 molecule and the PdAg, PdAu, PtAg and PtAu bimetallic dimers deposited on the MgO(100) surface is investigated using density functional theory (DFT). The bimetallic dimers, whose molecular axes are considered to be perpendicular to the support surface, are adsorbed on top of an oxygen atom. Within this adsorption mode, the dimers prefer the orientation in which their Pd or Pt end is closer to the oxygen atom. The Ag and Au ends of the MgO-supported dimers capture the H2 molecule with small exoenergetic effects. The spontaneous dissociation of H2 on these ends does not occur. Thus, the MgO support decreases the ability of the dimers to adsorb and dissociate the H2 molecule. From a catalytic viewpoint, it means that the activity of small bimetallic clusters toward the dissociative adsorption of H2 is reduced when they are arranged on MgO. On the other hand, the results of our calculations show that the presence of the MgO support strengthens the binding of H atoms inside the PdAu, PtAg and PtAu dimers.
The effect of MgO on structure and dielectric properties of aluminoborosilicate glasses was investigated. FTIR data indicated that glass network was mainly built by tetrahedral [SiO4], [BO4], [AlO4] and trigonal [BO3]. A small amount of AlO5 or AlO6 units also existed. The glass system was characterized with lower dielectric constant (4.17 ~ 4.6) and dielectric loss (12.3 × 10-4 ~ 14.77 × 10-4) at 1 MHz. With the increase of MgO content, the quantity of AlO5 or AlO6 units decreased. The variation of density showed a decreasing tendency. The dielectric constant and loss were all found to decrease.
Low-temperature co-fired ceramics (LTCC) applied in millimeter/microwave and terahertz frequencies (5G/6G) have attracted a lot of attention recently. In this study, MgO-based dielectric ceramics were successfully sintered at 950°C with the sintering aids: x wt.% of LiF fluoride (x=2, 4, 6, 8, 10) and 0.5wt.% of BBSZ (Bi2O3–B2O3–SiO2–ZnO) glass. BBSZ glass was introduced as another sintering aid to facilitate the sintering and densification. Crystalline structure and micro-morphology were investigated and analyzed. Dielectric properties (εr, Q×f, τf) at millimeter/microwave and terahertz wave frequencies were also studied. The ionic characteristics of Mg–O bond (fi), the lattice energy (U) and the bond energy (E) were calculated and analyzed. It is suggested that the optimal x=4, where εr=10.5, Q×f=120,000GHz (@12GHz) and τf=−26ppm/°C at millimeter/microwave range. When the frequency was up to terahertz (1.0THz), the εr values were 8.8–9.35 and the tanδ were 5.6×10−3–8.7×10−3. The experimental results indicated that the low-temperature sintered MgO-based ceramics have potential for millimeter/microwave and terahertz communication applications.
We review recent developments in magnetic tunnel junctions with perpendicular easy axis (p-MTJs) for nonvolatile very large scale integrated circuits (VLSIs). So far, a number of material systems such as rare-earth/transition metal alloys, L10-ordered (Co, Fe)–Pt alloys, Co/(Pd, Pt) multilayers, and ferromagnetic-alloy/oxide stacks have been proposed as electrodes in p-MTJs. Among them, p-MTJs with single or double ferromagnetic-alloy/oxide stacks, particularly CoFeB–MgO, were shown to have high potential to satisfy major requirements for integration.