Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    The Structure-Property-Processing Relationship for Sintered Yttria-Stabilized Zirconia (YSZ)/Alumina Bioceramics

    The objective of this research is to study the effects of alumina addition on the microstructure-mechanical property relationship and sintering behavior of yttria (3 mol%)-stabilized zirconia (YSZ) ceramics. Well-dispersed YSZ/Al2O3 ceramics containing 10–40 wt.% Al2O3 were prepared by solid state reaction method. The relative density, average grain size, lattice parameters, microhardness, and fracture toughness of YSZ/Al2O3 ceramics system sintered in the temperature range of 1250~1500°C as a function of Al2O3 content were investigated. Experimental results showed that the ceramics with high Al2O3 content and low sintering temperature tended to reveal low bulk densities. But the Al2O3 content dependence on relative density for YSZ/Al2O3 ceramics becomed deminishing when increasing the sintering temperature. Dense ceramics with composition of (80/20) (YSZ/Al2O3) and sintered at temperature of 1400°C and 1450°C revealed the optimal Vickers hardness and fracture toughness properties. These ceramics with high Al2O3 content tended to reveal small grain sizes. The high sintering temperature governs the slow grain growth and high hardness in materials indicating the good correlation between microstructure of fabricated dense and mechanical properties.