Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    A Mixed Finite Element-Based Numerical Method for Elastodynamics Considering Adhesive Interface Damage for Dynamic Fracture

    The numerical solution of the elastodynamic problem with kinematic boundary conditions is considered using mixed finite elements for the space discretization and a staggered leap-frog scheme for the discretization in time. The stability of the numerical scheme is shown under the usual CFL condition. Using the general form of Robin-type boundary conditions some cases of debonding and the resulting acoustic emission are studied. The methodology presented finds applications to geophysics such as in seismic waves simulation with dynamic rupture and energy release. In this paper, we focus on problems of fracture occurring at the interface of composite materials. Our goal is to study both the mechanism of crack initiation and propagation, as well as the acoustic emission of the released structure-borne energy which may be used in structural health monitoring and prognosis applications.