Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In multi-agent system (MAS), the communication topology of agent network plays a very important role in its collaboration. Small-world networks are the networks with high local clustering and small average path length, and the communication networks of MAS can be analyzed within the frame of small-world topology. Yet the real multiagent communication networks are abundant and the classical WS small-world model is not suitable for all cases. In this paper, two new small-world network models are presented. One is based on random graph substrate and local nodes preference reconnection and the other is based on regular graph substrate and long-range nodes preference reconnection. The characteristic of the network parameter such as the clustering coefficients, average path length, and eigenvalue λ2 and λn of the Laplacian matrix for these two models and WS model is studied. The consensus problem that based on these three models is also studied. An example is given and the conclusions are made in the end.
A mathematical model of vibration power generation (VPG) with the giant magnetostrictive material (GMM) is proposed on the basis of the magneto-mechanical coupling model, Jiles-Atherton model and electromagnetic induction law. According to the model, the output voltage of a giant magnetostrictive power generator has been calculated under the condition of different vibration frequency, pre-stress and bias magnetic field. The calculating results show that the model can reveal the relationship between the input vibrating stress and output voltage. The experiment of a giant magnetostrictive power generator has been carried out, and the experimental results agree well with the calculating results.