Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS

    In this short note, we discuss the basic approach to computational modeling of dynamical systems. If a dynamical system contains multiple time scales, ranging from very fast to slow, computational solution of the dynamical system can be very costly. By resolving the fast time scales in a short time simulation, a model for the effect of the small time scale variation on large time scales can be determined, making solution possible on a long time interval. This process of computational modeling can be completely automated. Two examples are presented, including a simple model problem oscillating at a time scale of 10–9 computed over the time interval [0,100], and a lattice consisting of large and small point masses.

  • articleNo Access

    MODELING TUMOR IMMUNOLOGY

    The aim of this paper is to discuss biological and computational models of tumor-immune system interactions. To this end we provid first a short introduction to the field of general immunology, then a more in-depth exposition of cancer immunology. Finally we discuss a first approach to vaccine that prevent tumor onset from a biological point of view and we describe how to reproduce this phenomenon from a computational model.