In the studies on the modularity conjecture for rigid Calabi–Yau threefolds several examples with the unique level 8 cusp form were constructed. According to the Tate conjecture, correspondences inducing isomorphisms on the middle cohomologies should exist between these varieties. In the paper, we construct several examples of such correspondences. In the constructions elliptic fibrations play a crucial role. In fact we show that all but three examples are in some sense built upon two modular curves from the Beauville list.