Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Congruences and related identities are derived for a set of colored and weighted partition functions whose generating functions generate the graded algebra of integer weight modular forms of level seven. The work determines a general strategy for identifying and proving identities and associated congruences for modular forms on the principal congruence subgroup of level 7. Ramanujan’s partition congruence modulo 7 serves as a prototype for the process used to prove new congruences for modular forms of level 7.
One major theme of this paper concerns the expansion of modular forms and functions in terms of fractional (Puiseux) series. This theme is connected with another major theme, holonomic functions and sequences. With particular attention to algorithmic aspects, we study various connections between these two worlds. Applications concern partition congruences, Fricke–Klein relations, irrationality proofs a la Beukers, or approximations to pi studied by Ramanujan and the Borweins. As a major ingredient to a “first guess, then prove” strategy, a new algorithm for proving differential equations for modular forms is introduced.