Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    WHEN COTORSION MODULES ARE PURE INJECTIVE

    We characterize rings over which every cotorsion module is pure injective (Xu rings) in terms of certain descending chain conditions and the Ziegler spectrum, which renders the classes of von Neumann regular rings and of pure semisimple rings as two possible extremes. As preparation, descriptions of pure projective and Mittag–Leffler preenvelopes with respect to so-called definable subcategories and of pure generation for such are derived, which may be of interest on their own. Infinitary axiomatizations lead to coherence results previously known for the special case of flat modules. Along with pseudoflat modules we introduce quasiflat modules, which arise naturally in the model-theoretic and the category-theoretic contexts.