Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Enhanced equivariant Saito duality

    In a previous paper, the authors defined an equivariant version of the so-called Saito duality between the monodromy zeta functions as a sort of Fourier transform between the Burnside rings of an abelian group and of its group of characters. Here, a so-called enhanced Burnside ring ˆB(G) of a finite group G is defined. An element of it is represented by a finite G-set with a G-equivariant transformation and with characters of the isotropy subgroups associated to all points. One gives an enhanced version of the equivariant Saito duality. For a complex analytic G-manifold with a G-equivariant transformation of it one has an enhanced equivariant Euler characteristic with values in a completion of ˆB(G). It is proved that the (reduced) enhanced equivariant Euler characteristics of the Milnor fibers of Berglund–Hübsch dual invertible polynomials are enhanced dual to each other up to sign. As a byproduct, this implies the result about the orbifold zeta functions of Berglund–Hübsch–Henningson dual pairs obtained earlier.