Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    REACHABILITY PROBLEMS FOR PRODUCTS OF MATRICES IN SEMIRINGS

    We consider the following matrix reachability problem: given r square matrices with entries in a semiring, is there a product of these matrices which attains a prescribed matrix? Similarly, we define the vector (resp. scalar) reachability problem, by requiring that the matrix product, acting by right multiplication on a prescribed row vector, gives another prescribed row vector (resp. when multiplied on the left and right by prescribed row and column vectors, gives a prescribed scalar). We show that over any semiring, scalar reachability reduces to vector reachability which is equivalent to matrix reachability, and that for any of these problems, the specialization to any r ≥ 2 is equivalent to the specialization to r = 2. As an application of these reductions and of a theorem of Krob, we show that when r = 2, the vector and matrix reachability problems are undecidable over the max-plus semiring (ℤ∪{-∞}, max,+). These reductions also improve known results concerning the classical zero corner problem. Finally, we show that the matrix, vector, and scalar reachability problems are decidable over semirings whose elements are "positive", like the tropical semiring (ℤ∪{+∞}, min,+).