Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    IWASAWA THEORY FOR ONE-PARAMETER FAMILIES OF MOTIVES

    In [A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, in Proc. St. Petersburg Mathematical Society, Vol. 12, American Mathematical Society Translations, Series 2, Vol. 219 (American Mathematical Society, Providence, RI, 2006), pp. 1–85] Fukaya and Kato presented equivariant Tamagawa number conjectures that implied a very general (non-commutative) Iwasawa main conjecture for rather general motives. In this article we apply their methods to the case of one-parameter families of motives to derive a main conjecture for such families. On our way there we get some unconditional results on the variation of the (algebraic) λ- and μ-invariant. We focus on the results dealing with Selmer complexes instead of the more classical notion of Selmer groups. However, where possible we give the connection to the classical notions.

  • articleNo Access

    Degeneration of Hodge structures over Picard modular surfaces

    We study variations of Hodge structures over a Picard modular surface, and compute the weights and types of their degenerations through the cusps of the Baily–Borel compactification. These computations are one of the key inputs which allow Wildeshaus [On the interior motive of certain Shimura varieties: the case of Picard surfaces, Manuscripta Math.148(3) (2015) 351–377] to construct motives associated with Picard modular forms.

  • articleNo Access

    The polylog quotient and the Goncharov quotient in computational Chabauty–Kim Theory I

    Polylogarithms are those multiple polylogarithms that factor through a certain quotient of the de Rham fundamental group of the thrice punctured line known as the polylogarithmic quotient. Building on work of Dan-Cohen, Wewers, and Brown, we push the computational boundary of our explicit motivic version of Kim’s method in the case of the thrice punctured line over an open subscheme of Spec . To do so, we develop a greatly refined version of the algorithm of Dan-Cohen tailored specifically to this case, and we focus attention on the polylogarithmic quotient. This allows us to restrict our calculus with motivic iterated integrals to the so-called depth-one part of the mixed Tate Galois group studied extensively by Goncharov. We also discover an interesting consequence of the symmetry-breaking nature of the polylog quotient that forces us to symmetrize our polylogarithmic version of Kim’s conjecture. In this first part of a two-part series, we focus on a specific example, which allows us to verify an interesting new case of Kim’s conjecture.