Please login to be able to save your searches and receive alerts for new content matching your search criteria.
On the basis of the lattice Boltzmann method for the Navier–Stokes equation, we have done a numerical experiment of a forced turbulence in real space and time. Our new findings are summarized into two points. Firstly, in the analysis of the mean-field behavior of the velocity field using the exit-time statistics, we have verified Kolmogorov's scaling and Taylor's hypothesis at the same time. Secondly, in the analysis of the intermittent velocity fluctuations using a non-equilibrium probability distribution function and the wavelet denoising, we have clarified that the coherent vortices sustain the power-law velocity correlation in the non-equilibrium state.
Based on the daily price data of Shanghai and London gold spot markets, we applied detrended cross-correlation analysis (DCCA) and detrended moving average cross-correlation analysis (DMCA) methods to quantify power-law cross-correlation between domestic and international gold markets. Results show that the cross-correlations between the Chinese domestic and international gold spot markets are multifractal. Furthermore, forward DMCA and backward DMCA seems to outperform DCCA and centered DMCA for short-range gold series, which confirms the comparison results of short-range artificial data in L. Y. He and S. P. Chen [Physica A 390 (2011) 3806–3814]. Finally, we analyzed the local multifractal characteristics of the cross-correlation between Chinese domestic and international gold markets. We show that multifractal characteristics of the cross-correlation between the Chinese domestic and international gold markets are time-varying and that multifractal characteristics were strengthened by the financial crisis in 2007–2008.