Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Effects of heat treatments on the on-line service life of a press die manufactured by W-EDM are studied. In this work, four manufacturing processes for a press die are considered: (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), (3) low temperature heat treatment after W-EDM, and (4) high temperature heat treatment after W-EDM. On-line punching experiments for an automobile part of BL646-chain are performed. The amount of wear of the die and punch, roll-over and burnish depth in the punched chain are measured every 1,000 strokes. Overall productivities are carefully compared. Finally, it is concluded that heat treatment after W-EDM for a press die can enhance its on-line service life. Especially, high temperature heat treatment after W-EDM is very attractive as a fast and cheap manufacturing method for a press die.
In this study, the surface heat treatment of mold materials was performed using a high-power laser heat source and surface hardening characteristics were investigated. Laser surface heat treatment is a hardening method in which a surface is heated using high-density energy and self-quenched through rapid cooling. Hence, the heat input during laser heat treatment is important. The heat input for the surface hardening of each material was compared, and it was found that the heat input for each mold material was different. Additionally, die cast iron has higher thermal conductivity compared to mold steel, resulting in a larger heat input during heat treatment.
Effects of heat treatments on the on-line service life of a press die manufactured by W-EDM are studied. In this work, four manufacturing processes for a press die are considered: (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), (3) low temperature heat treatment after W-EDM, and (4) high temperature heat treatment after W-EDM. On-line punching experiments for an automobile part of BL646-chain are performed. The amount of wear of the die and punch, roll-over and burnish depth in the punched chain are measured every 1,000 strokes. Overall productivities are carefully compared. Finally, it is concluded that heat treatment after W-EDM for a press die can enhance its on-line service life. Especially, high temperature heat treatment after W-EDM is very attractive as a fast and cheap manufacturing method for a press die.