Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This work explores the use of the Higuchi fractal dimension (HFD) to characterize the complexity of the Standard and Poor’s (S&P) Index for the period from 1928 to 2023. It is found that the fractal dimension is not constant but exhibits large time fluctuations. In line with adaptive market hypothesis notions, such a feature can be seen as the response of the stock market to a complex and changing environment formed by a diversity of participants and exogenous shocks. The concept of fractal dimension was extended to consider scale dependence and multifractality. It is shown that the fractality dimension approaches an integer value when the time scale increases, which reflects smoother price fluctuation profiles. It was also shown that the multifractal HFD exhibits large fluctuations for scales of weeks, months, and quarters, which can be linked to the seasonal periods of the operation of the stock market. The impact of salient events was also assessed. It was found that the 1987 and 2008 market crashes had the highest effect on the multifractal HFD, suggesting that these events involved multiple factors. Overall, the results in the present work showed that the fractal dimension tools and notions provide a useful and complementary framework for characterizing the behavior of financial indices.
Nanopore structure and its multiscale feature significantly affect the shale-gas permeability. This paper employs fractal theory to build a shale-gas permeability model, particularly considering the effects of multiscale flow within a multiscale pore space. Contrary to previous studies which assume a bundle of capillary tubes with equal size, in this research, this model reflects various flow regimes that occur in multiscale pores and takes the measured pore-size distribution into account. The flow regime within different scales is individually determined by the Knudsen number. The gas permeability is an integral value of individual permeabilities contributed from pores of different scales. Through comparing the results of five shale samples, it is confirmed that the gas permeability varies with the pore-size distribution of the samples, even though their intrinsic permeabilities are the same. Due to consideration of multiscale flow, the change of gas permeability with pore pressure becomes more complex. Consequently, it is necessary to cover the effects of multiscale flow while determining shale-gas permeability.