Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Portfolio optimization under the stochastic elasticity of variance

    Based on the observation that the elasticity of variance of risky assets is randomly varying around a constant, we take an underlying asset model in which the averaged constant elasticity of variance is perturbed by a small fast fluctuating process and study the Merton type portfolio optimization problem using dynamic programming as well as asymptotic expansions. The Hamilton–Jacobi–Bellman equation for each of the power and exponential utility functions leads to an optimal trading strategy as a perturbation around the well known one. We reveal the impact of both the constant elasticity of variance upon the Merton investment optimal control under the Black–Scholes model and the stochastic elasticity of variance upon the investment optimal control under the constant elasticity of variance model. The concavity of the investment policy with respect to the excess return is characteristic of a market economy with the constant or stochastic elasticity of variance.

  • articleFree Access

    Averaging principle for stochastic 3D generalized Navier–Stokes equations

    In this paper, the multiscale stochastic 3D generalized Navier–Stokes equations are studied. By using Khasminkii’s time discretization approach and the technique of stopping time, the strong averaging principle for stochastic 3D generalized Navier–Stokes equations is proved in the space 1(𝕋3).

  • articleNo Access

    REFINEMENT INDEPENDENT WAVELETS FOR USE IN ADAPTIVE MULTIRESOLUTION SCHEMES

    This paper constructs a class of semi-orthogonal and bi-orthogonal wavelet transforms on possibly irregular point sets with the property that the scaling coefficients are independent from the order of refinement. That means that scaling coefficients at a given scale can be constructed with the configuration at that scale only. This property is of particular interest when the refinement operation is data dependent, leading to adaptive multiresolution analyses. Moreover, the proposed class of wavelet transforms are constructed using a sequence of just two lifting steps, one of which contains a linear interpolating prediction operator. This operator easily allows extensions towards directional offsets from predictions, leading to an edge-adaptive nonlinear multiscale decomposition.

  • articleNo Access

    CONVERGENCE OF QUASI-LINEAR HYPERBOLIC EQUATIONS

    Multiscale stochastic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term. It is shown by classical G-convergence methods that the sequence of solutions to a class of multi-scale highly oscillatory (possibly random) hyperbolic problems converges in the appropriate Sobolev space to the solution to a homogenized quasilinear hyperbolic problem.