Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Based on the observation that the elasticity of variance of risky assets is randomly varying around a constant, we take an underlying asset model in which the averaged constant elasticity of variance is perturbed by a small fast fluctuating process and study the Merton type portfolio optimization problem using dynamic programming as well as asymptotic expansions. The Hamilton–Jacobi–Bellman equation for each of the power and exponential utility functions leads to an optimal trading strategy as a perturbation around the well known one. We reveal the impact of both the constant elasticity of variance upon the Merton investment optimal control under the Black–Scholes model and the stochastic elasticity of variance upon the investment optimal control under the constant elasticity of variance model. The concavity of the investment policy with respect to the excess return is characteristic of a market economy with the constant or stochastic elasticity of variance.
In this paper, the multiscale stochastic 3D generalized Navier–Stokes equations are studied. By using Khasminkii’s time discretization approach and the technique of stopping time, the strong averaging principle for stochastic 3D generalized Navier–Stokes equations is proved in the space ℍ1(𝕋3).
This paper constructs a class of semi-orthogonal and bi-orthogonal wavelet transforms on possibly irregular point sets with the property that the scaling coefficients are independent from the order of refinement. That means that scaling coefficients at a given scale can be constructed with the configuration at that scale only. This property is of particular interest when the refinement operation is data dependent, leading to adaptive multiresolution analyses. Moreover, the proposed class of wavelet transforms are constructed using a sequence of just two lifting steps, one of which contains a linear interpolating prediction operator. This operator easily allows extensions towards directional offsets from predictions, leading to an edge-adaptive nonlinear multiscale decomposition.
Multiscale stochastic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term. It is shown by classical G-convergence methods that the sequence of solutions to a class of multi-scale highly oscillatory (possibly random) hyperbolic problems converges in the appropriate Sobolev space to the solution to a homogenized quasilinear hyperbolic problem.