Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A THEORETICAL ANALYSIS OF MULTISCALE ENTROPY UNDER THE INVERSE GAUSSIAN DISTRIBUTION

    Multiscale entropy (MSE) discloses the intrinsic multiple scales in the complexity of physical and physiological signals, which are usually featured by heavy-tailed distributions. Most of these research results are pure experimental search, till Costa et al. made the first attempt to the theoretical basis of MSE. However, the analysis only supports the Gaussian distribution [Phys. Rev. E71, 021906 (2005)]. In this paper, we present the theoretical basis of MSE under the inverse Gaussian distribution, which is a typical model for physiological, physical and financial data sets. The analysis is applicable to uncorrelated inverse Gaussian process and 1/f noise with the multivariate inverse Gaussian distribution, providing a reliable foundation for potential applications of MSE to explore complex physical and physiological time series.

  • articleNo Access

    Nonlinear Vibration Analysis of the Coupled Gear-Rotor-Bearing Transmission System for a New Energy Vehicle

    Considering the effects of time-varying meshing stiffness, time-varying support stiffness, transmission errors, tooth side clearance and bearing clearance, a nonlinear dynamics model of the coupled gear-rotor-bearing transmission system of a new energy vehicle is constructed. Firstly, the fourth-order Runge–Kutta integral method is used to solve the differential equations of the system dynamics, and the time-varying meshing force diagram, time history diagram, phase diagram, FFT spectrum diagram, Poincaré map and bifurcation diagram of the system are obtained to study the influence of the external load excitation frequency on the dynamics characteristics of the system. In addition, the multiscale method is used to analyze the main resonance characteristics of the system and to determine the main resonance stability conditions of the system. The effect of time lag control parameters and external load excitation frequency on the main resonance of the system is analyzed by numerical methods. The results show that the gear-rotor-bearing coupled transmission system of the new energy vehicle has obviously nonlinear characteristics, avoiding the system instability interval reasonable selection of external load excitation frequency, meshing damping, time lag parameters and load fluctuations, which can be used to improve the stability of the transmission system of the new energy vehicle.