Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    CROSS-LINKS MULTISCALE EFFECTS ON BONE ULTRASTRUCTURE BIOMECHANICAL BEHAVIOR

    Bone is a multiscale combination of collagen molecules merged with mineral crystals. Its high rigidity and stability stem amply from its polymeric organic matrix and secondly from the connections established between interdifferent and intradifferent scale components through cross-links. Several studies have shown that the cross-links inhibition results in a reduction in strength of bone but they do not quantify the degree to which these connections contribute to the bone rigidity and toughness. This report is classified among the few works that measure the cross-links multiscale impact on the ultrastructure bone mechanical behavior.

    This work aims firstly to study the effect of cross-links at the molecule scale and secondly to gather from literature studies results handling with cross-links effects on the other bone ultrastructure scales in order to reveal the multiscale effect of cross-links. This study proves that cross-links increasing number improves the mechanical performance of each scale of bone ultrastructure. On the other hand, cross-links have a multiscale contribution that depends on its rank related to existing cross-links connecting the same geometries and it depends on mechanical characteristics of geometries connected.